Washington State is a large producer of buckwheat (*Fagopyrum esculentum*), much of which is exported overseas. Buckwheat is a popular crop choice for some Washington farmers with irrigated land because it’s a second crop they can plant in mid-summer after wheat, timothy hay, or pea harvest. Washington also exports much of its wheat crop overseas.

Unfortunately, in recent years, some foreign grain buyers have been finding low levels of buckwheat (Figure 1) in their wheat shipments from the United States. Some of these shipments have been traced to eastern Washington. In 2014, buckwheat was detected in eight of 27 shiploads of exported wheat. Buckwheat levels in these shipments ranged from 1 to 4 seeds per 2.2 pounds (1 kilogram) of wheat. Although these levels are within purchase contract specifications, some wheat buyers and consumers consider buckwheat to be an allergen and any level of contamination concerns them.

In order to maintain the excellent relationship between Washington wheat growers and foreign wheat buyers, it is imperative we do everything possible to eliminate buckwheat in wheat grain. Fortunately, there are effective buckwheat control options available for wheat growers who also want to produce buckwheat on their farms.

Crop Rotation

Buckwheat is typically grown under irrigation as a double crop following winter or spring wheat, timothy hay, or peas.

The simplest and most effective way to keep volunteer buckwheat out of wheat fields is to not plant wheat for at least one year following buckwheat production. Following buckwheat harvest, growers should use shallow tillage and irrigation, if available, to stimulate volunteer buckwheat to germinate and emerge, and then control it before planting another wheat crop (see Tillage, below). Cultivated buckwheat seed is not long-lived in the soil, particularly under irrigated conditions. Volunteer buckwheat is not considered a problem in crops grown more than two years after buckwheat harvest.

Tillage

Shallow tillage after buckwheat harvest will promote seed germination by improving seed-to-soil contact. Irrigation following shallow tillage will also promote buckwheat germination. Emerged buckwheat can be controlled with additional tillage or non-selective herbicides (see below); however, buckwheat that emerges in the fall will be killed by freezing temperatures before seed is produced.

Herbicides

Several herbicide options, including herbicides applied by chemigation, were screened for efficacy on buckwheat in irrigated spring wheat in 2016 and 2018. The best control was achieved by applying an early postemergence treatment when the wheat was just beginning to tiller (3- to 5-leaf stage) followed by a late postemergence chemigation treatment just as the wheat was entering the boot stage of development (Table). An early postemergence treatment alone did not provide adequate control of volunteer buckwheat. Huskie (pyrasulfotole + bromoxynil) followed by Maestro Advanced (bromoxynil + MCPA) provided top-tier control of buckwheat in both seasons, whereas other early postemergence followed by late postemergence treatments provided less consistent control across years.

Herbicides containing bromoxynil should be applied to buckwheat before plants have more than 8 leaves or are 4 inches in size. An effective early postemergence treatment is needed to control early flushes of buckwheat so that plants are not too large for effective control with late postemergence treatments. See the herbicide labels for specific information on use rates, application timing, and chemigation use and restrictions.

Figure 1. Buckwheat seed with a ruler (inches) for scale.
Bromoxynil has a very short half-life in soil. Consequently, rotation restrictions are relatively short unless the herbicide contains active ingredients with longer soil residual than bromoxynil. For example, Huskie contains bromoxynil plus pyrasulfotole and has a crop rotation interval up to nine months long for some crops like potatoes, sunflowers, and timothy. See herbicide labels for specific plant-back intervals.

Other potential herbicide options include 2,4-D, MCPA, Affinity BroadSpec (thifensulfuron + tribenuron), Aim (carfentrazone), and Harmony Extra (thifensulfuron + tribenuron). See those herbicide labels for specific information on use rates, application timings, and use restrictions.

Nonselective herbicides containing glyphosate or paraquat may also be used to control emerged volunteer buckwheat between crops.

Summary

Minimizing buckwheat contamination in wheat grain is necessary to produce a premium wheat product for export. This can be achieved by controlling volunteer buckwheat in wheat fields through cultural controls such as crop rotation and tillage, and the timely and judicious use of herbicides in wheat.

Acknowledgements

The author acknowledges the financial and intellectual contributions made by the Washington Grain Commission in the development of this publication. The assistance of Mark Thorne, Associate in Research, provided significant assistance in the conduct and data analysis of the field study.