USING COFFEE GROUNDS IN GARDENS AND LANDSCAPES
Home Garden Series

By
Dr. Linda Chalker-Scott, Extension Urban Horticulturist and Associate Professor, Washington State University,
Using Coffee Grounds in Gardens and Landscapes

Americans consume nearly 700 million cups of coffee a day (Zagat 2015), which means we generate a lot of coffee grounds in the process. Putting coffee grounds to use in the garden makes both economic and environmental sense (Figure 1). Many gardeners already use coffee grounds as an essential part of their compost mixture, but an increasing number of people are using them directly as mulch.

Speculation abounds that coffee grounds repel cats, kill slugs, prevent weeds, aerate and acidify the soil, provide nitrogen, and attract earthworms. This fact sheet examines the science behind the use of coffee grounds in gardens and landscapes and provides recommendations for home gardeners to use coffee grounds appropriately.

Chemical composition of coffee grounds

Not everything contained in a coffee bean makes it into a cup of coffee. Nitrogen-rich proteins needed for seed germination and growth comprise over 10 percent of the content in coffee grounds (Tokimoto et al. 2005). Since coffee is extracted in water, most of the hydrophobic compounds, including oils, lipids, triglycerides, and fatty acids, remain in the grounds, as do insoluble carbohydrates like cellulose. Structural lignin, protective phenolics, and the wonderful aroma-producing essential oils also remain in the grounds following the brewing process. Even small amounts of caffeine may remain in the grounds.

Decomposition of coffee grounds

Left outdoors over the course of several months, bacteria and fungi break down the various chemical components of coffee grounds. Nitrogen-rich compounds including proteins and caffeine break down quickly.

Some larger bioconsumers, including earthworms (Figure 2), use coffee grounds as a food source (Bollen and Lu 1961). The fact that earthworms pull coffee grounds deeper into the soil may account for noted improvements in soil structure such as increased aggregation following the application of coffee grounds.

Humic substances, which are important chemical and structural soil components, are produced through coffee ground degradation (Ouatmane et al. 2002). Carbon-to-nitrogen ratios change as well, generally starting out high (e.g. 25-26:1) and decreasing over time to about 10:1 (Morikawa and Saigusa 2008; Ouatmane et al. 2000). The latter is an ideal ratio for plant and soil nutrition.

How coffee grounds affect soils

Coffee grounds used as mulches or amendments have mostly positive effects on soils (Yamane et al. 2014). Coffee grounds will moderate soil temperature and increase soil water (Ballesteros et al. 2014) like any other good mulch material. Coffee grounds bind pesticide residues (Bouchenafa-Saïb et al. 2014; Fenoll et al. 2014) and toxic heavy metals such as cadmium (Azouaou et al. 2010; Kim et al. 2014), preventing their movement into the surrounding environment.

Figure 1. Many coffee shops provide used grounds for their customers. (Photo by Linda Chalker-Scott, WSU.)

Figure 2. Earthworms are voracious consumers of coffee grounds. (Photo by Shanegenziuk, via Wikimedia Commons.)
They also increase the availability of essential plant nutrients such as nitrogen, phosphorus, iron, and zinc (Kitou and Okuno 1999; Liu and Price 2011; Morikawa and Saigusa 2011, 2008), especially in more alkaline soils.

FAQs about coffee grounds

**Q: Will coffee grounds make my compost or soil too acidic?**

A: Many gardeners assume that coffee grounds are acidic, but this does not hold true experimentally. Studies on coffee ground composting have reported pH levels ranging from mildly acidic (Morikawa and Saigusa 2008) to somewhat alkaline (Ros et al. 2005). The pH of decomposing coffee grounds is not stable and one shouldn’t assume that it will always, or ever, be acidic. Also keep in mind that pH changes will only be in the immediate vicinity of the coffee grounds, not throughout the entire soil profile.

**Q: Can coffee grounds help my plants?**

A: Yes. When they are used properly, coffee grounds supply nutrients and provide other benefits that increase plant growth (Yamane et al. 2014). In general, only composted coffee grounds should be worked in as a soil amendment, while either fresh or composted grounds can be used in a mulch layer. Fresh grounds are more likely to be phytotoxic (Wakasawa et al. 1998), so keeping them away from direct contact with desirable plant roots is recommended.

Don’t use coffee grounds in areas where you are growing plants from seed. Reduced seed germination and plant growth of many crop and ornamental species has been observed in experiments using coffee grounds either as an amendment or a mulch (Nagaoka et al. 1996; Wakasawa et al. 1998).

**Q: Will coffee grounds keep slugs and other animal pests away?**

A: There is no published evidence that coffee grounds will repel or kill any garden pests. Nor is there any science-based information on their ability to attract either pests or beneficial animals like earthworms.

**Q: Do coffee grounds help control diseases?**

A: Research suggests that the bacterial (Nagai et al. 2002; Ros et al. 2005) and fungal species normally found on decomposing coffee grounds, such as non-pathogenic *Pseudomonas*, *Fusarium*, and *Trichoderma* spp. and pin molds (Mucorales), prevent pathogenic fungi from establishing (Hamanaka et al. 2005; Ros et al. 2005).

Action list for using coffee grounds in compost

- Use no more than 20 percent by volume of coffee grounds in a compost pile (Figure 3). A diverse feedstock will ensure a healthy diversity of microorganisms.
- Don’t assume coffee grounds will make an acidic compost; pH levels will change over time.
- Be sure to allow coffee grounds to cool before adding them to your compost; heat can kill your beneficial microbes.
- Avoid adding coffee grounds to vermicomposting bins; they can injure or kill earthworms in these confined areas (Liu and Price 2011).
- Understand that disease suppression from non-pathogenic organisms found in decomposing coffee grounds has only been demonstrated under controlled conditions on a handful of crops, including bean (Adams et al. 1968a and b), melon (Ros et al. 2005), spinach (Escuadra et al. 2008), and tomato (Nagai et al. 2002). Their efficacy in gardens and landscapes is unknown.

Action list for using coffee grounds directly as a mulch

- Apply a thin layer (no more than half an inch) of coffee grounds. Cover with a thicker layer (four inches) of coarse organic mulch like wood chips (Chalker-Scott 2015). This will protect the coffee grounds from compaction (Figure 4).
Don’t apply thick layers of coffee grounds as a standalone mulch. Because they are finely textured and easily compacted, coffee grounds can interfere with moisture and air movement in soils.


Cover photo by BenFrantzDale, via Wikimedia Commons.

References


Zagat. 2015. [National Coffee Survey](http://www.zagat.com)